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Abstract—In this paper a method of computing the boundary 
charge density and the normal field strength on the Dirichlet 
boundaries under the PR (polarity reversal) voltage is presented. 
The method adopts C-N (Crank-Nicolson) method to solve the 
transient equation and uses directly the node charges as variable 
to obtain the boundary node charge densities, which could be 
adopted to compute the normal electric field strength. The 
method is verified by a two layer coaxial model and applied to 
analyze the transient electric fields and boundary charge 
densities of a converter transformer under PR voltage 
successfully.  

I. INTRODUCTION  
Converter transformer is one of key equipments in HVDC 

substation. The electric fields of converter transformer under 
PR (polarity reversal) voltage, which is much more complex 
than AC or DC static electric fields, have been studied by 
many researchers. When DC voltage applied on the valve side 
windings of the transformer, charges would accumulate on the 
interfaces of insulation materials and seriously influence the 
electric field distribution when PR happens. Although many 
papers on the PR’s electric field analysis of converter 
transformer have published [1]-[2], the quantitatively 
numerical studies on charges or charge densities under PR 
have not done. 

In Ref. [3], a charge-electric potential formulation is used 
to analyze transient nonlinear electric field, in which the 
dynamic node charges and potentials can be got 
simultaneously. However we usually get the charge density 
from the actual measurement voltage, so the charges should be 
converted to charge densities, which are easy to compare with 
the corresponding ones calculated from measurement.  

In this paper, a method of obtaining the volumetric and 
surface charge densities is presented, and the PR’s electric 
field represented by a scalar electric potential and charge 
densities is solved by the C-N method. The surface charge 
densities on the Dirichlet boundaries are adopted to get the 
normal electric field with higher accuracy, which are very 
useful in insulation design of converter transformer. The 
accuracy of the method is tested by a simple linear model, and 
transient electric fields, surface charge densities of a converter 
transformer are calculated. 

II. FORMULATION 

A. Charge Density –Potential Formulation 
The quasi-static electric field can be governed by the 

following equations： 
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The surface charge exists on the interface of two media. The 
surface charge satisfies: 
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Applying Galerkin method, we could obtain the weak 
form equations: 
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In Ref. [3], the charge density integration terms in the 
above equation are treated as node charges. We can 
directly use the volume charge density and surface charge 
density as variables in (5), which will get the following 
equations: 
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Where Kγ , Kε are the dielectric matrix and conductivity 
matrix, respectively. P contains two kinds’ coefficients, which 
are called volumetric coefficient Pv and surface coefficient Ps 
in this paper. For a two dimensional plane problems, Pv and Ps 
can be computed by [4] 
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There are only surface charges on the surface. We could treat 
all the volumetric charge densities as the homogeneous 
Dirichlet boundary conditions and impose them as we deal 
with the potential boundary conditions in FEM. For example, 
if i is a surface node, all the volumetric coefficients Pvij related 
with node i are set to zeros and Pvii=1, the coefficient Pvij is 
then replaced by Psij due to ρvi=0. Therefore, the steps of 
computing P are: 
a. Compute volumetric coefficient Pvij and assembly them into 

P. 
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b. Set all the volumetric coefficients related to the surface 
node to zeros. 

c. Compute surface coefficient Psij and assembly them into P.  
The P in (7) could be repeatedly used at each time step due 

to the independence of material property.   
Writting (7) into a more compact matrix form: 
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Equation (8) is an initial value problem with the specified 
boundary and initial conditions and can be solved by C-N 
method [5]. 

B. Computation of Boundary Charge Density and Normal 
Electric Field Strenth 

The normal electric field intensities on the Dirichlet 
boundaries at the k-th time step can be obtained by 
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where ρi
k and εi are the surface charge density at k-th time 

step and the permittivity at the normal direction of the node i 
respectively. 

III. VERIFICATION 
The accuracy of the proposed method can be shown by a 

coaxial model consisted of two layers dielectrics under DC 
voltage in Fig.1.   
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Fig. 1 Dual layer dielectrics of coaxial model, R1=1m, R2=3m, R3=7m.ε1 
=2ε0, γ1 =10-15S/m, ε2 =ε0, and γ2 =10-13S/m. 

The amplitude of a ramp voltages applied on inner 
conductor (R1) is 1000V and outer conductor (R3) is grounded. 
Only one fourth areas are analyzed due to the axial symmetry. 
The area is divided into triangular meshes. Two different 
meshes are used in our analysis, (a) Coarse mesh: 340 
triangles, 196 nodes, (b) Fine mesh: 8554 triangles, 4401 
nodes. 

The analytical solution of only the surface density and the 
maximum and minimum relative error of the proposed method 
are displayed in Fig. 2 for simplicity, the detail will be given 
in the full paper. 
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Fig. 2 Curves of charge density and its relative errors with coarse meshes 
 The curves show that when the system tends to be steady 

state, the relative errors would reach its maximum. So we give 
the relative errors of the normal electric field intensity on R1, 

R3 and the surface charge density on R2 under steady state. 
We also give the results of common FEM post-process 
method, which the node electric strength is obtained by 
dividing the summation of the related elements’ electric fields 
by the elements’ total number, in Tab. I. 

TABLE I 
THE RELATIVE ERROR OF THE TWO METHODS 

Er at R1 

(AV) 
Relative error 

of Er at R3 
Relative error 

of ρs at R2  
proposed traditional proposed traditional proposed traditional

rmax 4.10 -16.91 0.747 4.50 1.149 10.169 Coarse 
mesh rmin -0.355 -17.98 -0.145 3.9 -0.707 8.67 

rmax 0.804 -4.0 1.435 0.729 -0.240 1.717 Fine 
mesh rmin -0.858 -4.87 -0.0863 0.605 0.305 1.431 

From Table. I we can clearly see that the precision of the 
common FEM method with coarse meshes is very low and 
can be improved by refining the meshes, which need much 
more computational cost. The proposed method gets much 
higher accuracy because it does not need differentiation as 
the common FEM post-process. 

Though the accuracy of the presented method is only 
testified by a simply linear model, which has no volume 
charges, the method to solve (6.2) could be regarded as an 
inverse operation of calculating the source vector from the 
kwon charge density distribution [6], which is commonly 
used in solving Poisson’s equation. So the accuracy of the 
volumetric densities would be guaranteed according to the 
potential distributions at each time step.  

IV. NUMERICAL APPLICATION 
The transient electric fields and charge densities of a 

converter transformer under the PR voltage are computed by 
the presented method. The transient surface node charge 
densities are used to calculate the normal electric fields on the 
electrostatic ring and the bushing barrier. The detail will be 
given in the full paper. 
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